Infinite Homoclinic Solutions of the Discrete Partial Mean Curvature Problem with Unbounded Potential

نویسندگان

چکیده

The mean curvature problem is an important class of problems in mathematics and physics. We consider the existence homoclinic solutions to a discrete partial problem, which tied solitons. Under assumptions that potential function unbounded nonlinear term superlinear at infinity, we obtain infinitely many this by means fountain theorem critical point theory. In end, example given illustrate applicability our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Infinite Resonant Solutions and Turning Points in a Problem with Unbounded bifurcation

We consider an elliptic equation −∆u + u = 0 with nonlinear boundary conditions ∂u ∂n = λu + g(λ, x, u), where g(λ, x, s) s → 0, as |s| → ∞. In [1, 2] the authors proved the existence of unbounded branches of solutions near a Steklov eigenvalue of odd multiplicity and, among other things, provided tools to decide whether the branch is subcritical or supercritical. In this work we give condition...

متن کامل

Existence and Multiplicity Results of Homoclinic Solutions for the DNLS Equations with Unbounded Potentials

and Applied Analysis 3 DNLS equation is one of the most important inherently discrete models, which models many phenomena in various areas of applications see 2–4 and reference therein . For example, in nonlinear optics, DNLS equation appears as a model of infinite wave guide arrays. In the past decade, the existence and properties of mobile discrete solitons/breathers in DNLS equations have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10091436